Large language models have demonstrated outstanding performance on a wide range of tasks such as question answering and code generation. On a high level, given an input, a language model can be used to automatically complete the sequence in a statistically-likely way. Based on this, users prompt these models with language instructions or examples, to implement a variety of downstream tasks. Advanced prompting methods can even imply interaction between the language model, a user, and external tools such as calculators. However, to obtain state-of-the-art performance or adapt language models for specific tasks, complex task- and model-specific programs have to be implemented, which may still require ad-hoc interaction. Based on this, we present the novel idea of Language Model Programming (LMP). LMP generalizes language model prompting from pure text prompts to an intuitive combination of text prompting and scripting. Additionally, LMP allows constraints to be specified over the language model output. This enables easy adaption to many tasks, while abstracting language model internals and providing high-level semantics. To enable LMP, we implement LMQL (short for Language Model Query Language), which leverages the constraints and control flow from an LMP prompt to generate an efficient inference procedure that minimizes the number of expensive calls to the underlying language model. We show that LMQL can capture a wide range of state-of-the-art prompting methods in an intuitive way, especially facilitating interactive flows that are challenging to implement with existing high-level APIs. Our evaluation shows that we retain or increase the accuracy on several downstream tasks, while also significantly reducing the required amount of computation or cost in the case of pay-to-use APIs (13-85% cost savings).
translated by 谷歌翻译
Despite the Digital Twin (DT) concept being in the industry for a long time, it remains ambiguous, unable to differentiate itself from information models, general computing, and simulation technologies. Part of this confusion stems from previous studies overlooking the DT's bidirectional nature, that enables the shift of agency (delegating control) from humans to physical elements, something that was not possible with earlier technologies. Thus, we present DTs in a new light by viewing them as a means of imparting intelligence and agency to entities, emphasizing that DTs are not just expert-centric tools but are active systems that extend the capabilities of the entities being twinned. This new perspective on DTs can help reduce confusion and humanize the concept by starting discussions about how intelligent a DT should be, and its roles and responsibilities, as well as setting a long-term direction for DTs.
translated by 谷歌翻译
噪声的去除或取消对成像和声学具有广泛的应用。在日常生活中,Denoising甚至可能包括对地面真理不忠的生成方面。但是,对于科学应用,denoing必须准确地重现地面真相。在这里,我们展示了如何通过深层卷积神经网络来定位数据,从而以定量精度出现弱信号。特别是,我们研究了晶体材料的X射线衍射。我们证明,弱信号是由电荷排序引起的,在嘈杂的数据中微不足道的信号,在DeNo的数据中变得可见和准确。通过对深度神经网络的监督培训,具有成对的低噪声数据,可以通过监督培训来实现这一成功。这样,神经网络就可以了解噪声的统计特性。我们证明,使用人造噪声(例如泊松和高斯)不会产生这种定量准确的结果。因此,我们的方法说明了一种实用的噪声过滤策略,可以应用于具有挑战性的获取问题。
translated by 谷歌翻译
Existing neural network verifiers compute a proof that each input is handled correctly under a given perturbation by propagating a symbolic abstraction of reachable values at each layer. This process is repeated from scratch independently for each input (e.g., image) and perturbation (e.g., rotation), leading to an expensive overall proof effort when handling an entire dataset. In this work, we introduce a new method for reducing this verification cost without losing precision based on a key insight that abstractions obtained at intermediate layers for different inputs and perturbations can overlap or contain each other. Leveraging our insight, we introduce the general concept of shared certificates, enabling proof effort reuse across multiple inputs to reduce overall verification costs. We perform an extensive experimental evaluation to demonstrate the effectiveness of shared certificates in reducing the verification cost on a range of datasets and attack specifications on image classifiers including the popular patch and geometric perturbations. We release our implementation at https://github.com/eth-sri/proof-sharing.
translated by 谷歌翻译
我们提出了一种基于随机平滑的图像和点云进行分割的新认证方法。该方法利用一种新颖的可扩展算法进行预测和认证,该算法正确说明了多次测试,这是确保统计保证所必需的。我们方法的关键是依靠已建立的多次测试校正机制,以及弃权分类单像素或点的能力,同时仍然坚固地分割整个输入。我们对综合数据和挑战数据集的实验评估,例如Pascal环境,城市景观和Shapenet,表明我们的算法可以首次实现现实世界中的竞争精度和认证保证。我们在https://github.com/eth-sri/sementation-smoothing上提供实施。
translated by 谷歌翻译
Deep convolutional networks have proven to be very successful in learning task specific features that allow for unprecedented performance on various computer vision tasks. Training of such networks follows mostly the supervised learning paradigm, where sufficiently many input-output pairs are required for training. Acquisition of large training sets is one of the key challenges, when approaching a new task. In this paper, we aim for generic feature learning and present an approach for training a convolutional network using only unlabeled data. To this end, we train the network to discriminate between a set of surrogate classes. Each surrogate class is formed by applying a variety of transformations to a randomly sampled 'seed' image patch. In contrast to supervised network training, the resulting feature representation is not class specific. It rather provides robustness to the transformations that have been applied during training. This generic feature representation allows for classification results that outperform the state of the art for unsupervised learning on several popular datasets . While such generic features cannot compete with class specific features from supervised training on a classification task, we show that they are advantageous on geometric matching problems, where they also outperform the SIFT descriptor.
translated by 谷歌翻译
The performance of the Deep Learning (DL) models depends on the quality of labels. In some areas, the involvement of human annotators may lead to noise in the data. When these corrupted labels are blindly regarded as the ground truth (GT), DL models suffer from performance deficiency. This paper presents a method that aims to learn a confident model in the presence of noisy labels. This is done in conjunction with estimating the uncertainty of multiple annotators. We robustly estimate the predictions given only the noisy labels by adding entropy or information-based regularizer to the classifier network. We conduct our experiments on a noisy version of MNIST, CIFAR-10, and FMNIST datasets. Our empirical results demonstrate the robustness of our method as it outperforms or performs comparably to other state-of-the-art (SOTA) methods. In addition, we evaluated the proposed method on the curated dataset, where the noise type and level of various annotators depend on the input image style. We show that our approach performs well and is adept at learning annotators' confusion. Moreover, we demonstrate how our model is more confident in predicting GT than other baselines. Finally, we assess our approach for segmentation problem and showcase its effectiveness with experiments.
translated by 谷歌翻译
Landing an unmanned aerial vehicle unmanned aerial vehicle (UAV) on top of an unmanned surface vehicle (USV) in harsh open waters is a challenging problem, owing to forces that can damage the UAV due to a severe roll and/or pitch angle of the USV during touchdown. To tackle this, we propose a novel model predictive control (MPC) approach enabling a UAV to land autonomously on a USV in these harsh conditions. The MPC employs a novel objective function and an online decomposition of the oscillatory motion of the vessel to predict, attempt, and accomplish the landing during near-zero tilt of the landing platform. The nonlinear prediction of the motion of the vessel is performed using visual data from an onboard camera. Therefore, the system does not require any communication with the USV or a control station. The proposed method was analyzed in numerous robotics simulations in harsh and extreme conditions and further validated in various real-world scenarios.
translated by 谷歌翻译
We develop theory and methods that use the graph Laplacian to analyze the geometry of the underlying manifold of point clouds. Our theory provides theoretical guarantees and explicit bounds on the functional form of the graph Laplacian, in the case when it acts on functions defined close to singularities of the underlying manifold. We also propose methods that can be used to estimate these geometric properties of the point cloud, which are based on the theoretical guarantees.
translated by 谷歌翻译
Nearly all jurisdictions in the United States require a professional license exam, commonly referred to as "the Bar Exam," as a precondition for law practice. To even sit for the exam, most jurisdictions require that an applicant completes at least seven years of post-secondary education, including three years at an accredited law school. In addition, most test-takers also undergo weeks to months of further, exam-specific preparation. Despite this significant investment of time and capital, approximately one in five test-takers still score under the rate required to pass the exam on their first try. In the face of a complex task that requires such depth of knowledge, what, then, should we expect of the state of the art in "AI?" In this research, we document our experimental evaluation of the performance of OpenAI's `text-davinci-003` model, often-referred to as GPT-3.5, on the multistate multiple choice (MBE) section of the exam. While we find no benefit in fine-tuning over GPT-3.5's zero-shot performance at the scale of our training data, we do find that hyperparameter optimization and prompt engineering positively impacted GPT-3.5's zero-shot performance. For best prompt and parameters, GPT-3.5 achieves a headline correct rate of 50.3% on a complete NCBE MBE practice exam, significantly in excess of the 25% baseline guessing rate, and performs at a passing rate for both Evidence and Torts. GPT-3.5's ranking of responses is also highly-correlated with correctness; its top two and top three choices are correct 71% and 88% of the time, respectively, indicating very strong non-entailment performance. While our ability to interpret these results is limited by nascent scientific understanding of LLMs and the proprietary nature of GPT, we believe that these results strongly suggest that an LLM will pass the MBE component of the Bar Exam in the near future.
translated by 谷歌翻译